Външен Ван де Грааф генератор с “пръстен на Уинтър”
Ако построите последния описан генератор, ще знаете, че не преувеличавах, като казах, че можете да получите 3500 волта (или повече) от стара китйка за филмова лента. Въпреки че е интересен, простият рото-статичен генератор няма да ви държи доволни за дълго. Има високи волтажи за завладяване! Така че нека продължим нататък към следващия вид генератор и да се пробваме за 10 000 волта (и вероятно няколко пъти по тази цифра) от гумен колан.
Наричам следния генератор “външен” генератор, защото всичките компоненти на генератора са монтирани външно по такъв начин, така че да направят конструирането и експерименталните модификации бързи и лесни. Тъй като всичките механизми са открити, генераторът е чудесен за експериментатора, който иска бързо да пробва различни материали и конфигурации, разработвайки собствения си дизайн или за някой, който иска набързо да сглоби генератор за демонстрации.
Високоволтовият терминал на този генератор се състои от метален пръстен, или тороид, с изключителна ефикасност. Наричам го “пръстен на Уинтър”, въпреки че такива пръстени традиционно са се правели от дърво. Вече рядко се използват. Както с другите части на генератора, пръстенът на Уинтър може бързо да се замени с по-традиционен сферично оформен терминал или с много други, които може да искате да опитате. Защо да нямате няколко под ръка за демонстрации?
Въпреки факта че, както обсъждахме, електростатичните принципи са добре известни от хиляди години, едва наскоро през 1928г беше перфектно разработена една действително практична машина за генериране на високи статични напрежения. Робърт Дж. Ван де Грааф (Robert J. Van de Graaff), млад учен от Роудс (Rhodes, университет, бел. прев), работещ в Принстън, проектирал своята първа машина за генериране на високи потенциали, които били нужни за захранването на ускорител на частици за бомбардиране на атомни ядра като част от експериментите му в ядрените изследвания.
Въпреки че може да е трудно, не е невъзможно за един домашен експериментатор да направи свой собствен разбивач на атоми! Ван де Грааф генератор, като този описан тук, е интегрална част от такъв апарат. Ако се интересувате да поемете с проект с епични пропорции, намерете си “Ученият аматьор” от К. Л. Стонг (“The Amateur Scientist”, C. L. Stong), която вече е извън тираж и е много трудна за намиране, но си заслужава усилията. Или пишете с искане за подобна информация до Information Unlimited. Р. O. Box 716, Amherst NH 03031.
Ван де Графът е толкова прост и очевиден в дизайна си, че се удивявам защо не е бил изобретен по-рано. Винаги съм мислил, че това е добър пример за това, че изобретенията не е нужно да са екстремно сложни, за да имат значителен ефект върху обществото. Колко ли още прости устройства чакат да бъдат проектирани и построени? Вие можете да сте човекът, който драматично ще промени света!
Най-лесният начин да се проумее Ван де Графът е да се разгледа схематичната диаграма на фигура 13. ЕДин Ван де Грааф генератор се състои от колан, две макари, мотор, четки и терминали за висок и нисък потенциал.
В по-новите машини долната макара е пластмасова, докато по-старите машини използват изолатор, покрит с вълна или сходен триещ материал. Горната макара трябва да е от проводим материал, като например метал или дори дърво, което не е добър изолатор при високи напрежения.
Когато машината оперира, малък мотор, прикрепен към долната макара, задвижва колана, който е леко опънат върху двете макари. Между повърхнините на колана и пластмасовото колело се случва триене, което създава електростатичен заряд върху колана. Четката на върха на колана приема оставащия положителен заряд и го доставя до високо потенциалния терминал. (Бележка: Възможно е да се направи Ван де Грааф генератор, който развива отрицателен заряд върху високоволтовия си терминал.)
Като се движи колана, върху високо потенциалния терминал се натрупва заряд. Теоретично, този заряд може да се увеличава вечно. Само че, изтичанията във въздуха от горния терминал ограничават максималния потенциал до около 50 до 100 000 волта по принцип.
Един прост начин за изчисляване на теоретичния максимум на потенциала на “съвършен” сферичен връх е да се вземе волтаж, който е 70 000 пъти по най-малкия радиус на извивката на високо потенциалния терминал. Например, повечето сфери се продават с посочен точния им диаметеръ. За сфера с диаметър 28 см, делим 28 на 2, за да получим радиуса, или 14 см. Умножаваме по 70 000, за да получим теоретичния волтаж 420 000 волта.
Тъй като терминалът ви никога няма да е съвършена сфера и защото ще има течове към атмосферата, теоретичните волтажи няма да бъдат достигнати. Въпреки това тези изчисления може да ви се сторят интересни.
Фотография на моя външен Ван де Грааф и схемата му са показани на фигури 14 и 15. Сметнах, че това е екстремно прост и нескъп дизайн. Като работи, може да се разчита, че ще произведе волтаж между 10 – 30 000 волта, като се ползва обикновен гумен колан. Ще произведе твърдо и ободряващо “пук”, когато се разрежда в ръката ви. Може да хвърли искри до земята и може да са по-дълги от 3 см. Неоновите крушки, като например Ne2, ще светят ярко и продължително, когато са близо до генератора. От събирателните четки с готовност се наблюдава синьо коронно сияние в затъмнена стая, когато очите ви привикнат с тъмното. Отрицателната и положителната корона може да се идентифицират по външния си вид, като се използва това устройство, както ще обсъждаме по-късно.
Показаният външен Ван де Грааф има някои малки ограничения в представянето, дължащи се на относително високото триене при горното колело (няма сачмени лагери) и на прекомерно огъване на гумения ластик. Гумен ластик трябва да се ползва като гумен колан само за демонстрационни цели. За по-сериозно експериментиране, заменете колана с по-малко гъвкав колан, например с такъв, направен от вътрешна гума на колело или, в идеалния случай, от неопрен. Също така, без сачмени лагери, горното колело се нуждаеше от смазване от време на време, което есто създаваше риска от замърсяване с масло. С изключение на тези малки проблеми, генераторът се е доказал като отличен апарат, на който може да се разчита. Той продължава да бъде най-лесният за модифициране и наблюдение дизайн от всичките варианти на Ван де Грааф, които ще опиша.
Конструирането на външния Ван де Грааф също е толкова проста и праволинейна, че не са нужни много описания извън рисунката. Няколко трика могат да опростят и да подобрят конструкцията.
Един лесен начин да подравните мотора, ролката и колана, е да пуснете генератора си, докато държите мотора с ръка и да експериментирате, докато намерите правилната позиция за него. АКо коланът ви се изплъзва, преместете леко мотора, за да промените атаката или захвата му върху колана.
Когато свързвате колан между две ролки в кой да е генератор тип Ван де Грааф, естествено е да се предположи, че макарите трябва да имат вежди по ръбовете си, за да се осигори коловоз, в който да се движи колана, за да се предотврати изплъзването от водещото колело. Изненадващо е, че коланът ще има тенденцията да остане центриран върху ролките, дори и когато са някак изместени и не са подравнени! Предполагам, че това има нещо общо с начина, по който се променят напреженията по колана, когато приближава до ръба на ролката. Може да откриете, че малка “гърбица” във водещото колело може дори да бъде от помощ при високи обороти. Веднъж след като са подравнени, въобще не би трябвало да имате проблем с изплъзващи се колани.
За горния терминал използвайте най-големия диаметър на медна тръба, който ви е удобен. Проблемът е, че когато медните тръби с по-голям диаметър се огъват в кръгове с малък диаметър, се образуват нежелателни вълнички. Тръбите с по-голямо Фи трябва да се огъват в по-големи кръгове, което ви кара да правите компромис между размера и ефикасността.
Когато запоявате квата края на медната тръба в Т-образен конектор, първо ги почистете с по-фина стоманена вълна, след това ги калайдисайте, преди да ги вкарате във Т-връзката. Това ще създаде изключително здрава и гладка връзка. Може да използвате каква да е обикновена газова горелка за нагряване и заваряване на тръбата.
Ако използвате същия тип четки, каквито са посочени на рисунката, може да се изкушавате да скъсите медните жици, водещи до тях от PVC тръбите или по друг начин да промените начина на монтиране. Не го правете! Именно гъвкавостта на тези дълги медни жици е нещото, което осигурява “пруоинирането”, което е нужно, за да има постоянен, плосък допир до колана.
Пластмасовата долна макара е просто едно от пластмасовите колела, които се ползват в евтината мебел. Монтирано е за оста на мотора, като централната му дупка е внимателно разпробита до размер, мъничко по-малък от диаметъра на моторната ос. След това капвате няколко капки супер-лепило на оста и натискате или начуквате колелото върху нея.
Ако дупката на колелото е по-голяма от диаметъра на оста, залепвайте все по-големи парчета гумени тръби за моторната ос, докато колелото не запоне стегнато да пасва.
Една последна бележка: Тъй като връхният ви терминал е от мед, която бързо потъмнява, може да искате да приложите малко силиконов препарат за почистване или защита, като онези химикали, които се продават за почистване на хромирани автомобилни части. Това също така явно спомага за ограничаване на изтичането и за произвеждането на интересно двойно “пук”, когато се докосва.
Злото на маслотоЕдинственият голям проблем, с който се сблъсках при построяването и оперирането на Ван де Грааф генератори, без значение от дизайна, е земърсяването с масло. Тъй като Ван де Грааф генераторът разчита на триене между пластмасовото колело и гумения колан, за да произведе заряд, можете да си представите опустошителния ефект, който смазката или какъвто и да е друг овлажнител имат върху представянето. Дори и мазнината от пръстите ви може да намали заряда, който се носи от колана. Избягвайте да докосвате коланите си и ги дръжте само за външните ръбове, както правите с плочите или аудио-дисковете си.
Най-лошият лубрикант са маслата на петролна основа, каквито се използват за смазването на моторни оси и лагери. Ъгловият момент от моторната ос в действителност може да издърпа капчица масло по цялата дължина на оста, по страната на ролката и върху колана.
Следователно, не смазвайте мотора си излишно, нито пък лагерите.Ако искате графична демонстрация на този ефект, поставете капка супер-лепило върху оста на мотора си. Преди да има възможност да изсъхне, пуснете мотора си за няколко секунди. Ако моторът ви е като моя, ще имате малка пътечка от супер-лепило от оста до външната страна на колелото, където ще се образува малко петно.
Веднъж след като коланът и ролките ви са замърсени, може да е много трудно да се почистят. Най-добрият начин за почистване на колана е въобще да не се почиства, а да се хвърли на боклука и да се вземе друг колан.
Проводящата метална горна ролка може да се почисти с чистител, който няма останки, например амоняк, последвано от леко шкурене с екстра-фина шкурка и после още едно почистване с амоняк.
Почистването на пластмасовата ролка е най-трудното. Пластмасовата ролка обикновено развива статичен заряд от само себе си, докато работи генератора. Този заряд изглежда действа като попивателна гъба за масло! Единственият начин да го премахвам, който съм открил, е като закрепя жица за земята и да пусна мотора да работи, докато влача заземената жица по външната повърхност на колелото. Това е съпроводено от или последвано от амонячни почиствания. Други разтворители може да работят, но внимавайте за онези, които може да разтварят пластмаса. Осъзнавам, че тази процедура може да звучи екстремно, но съм се опитвал дори да потапям пластмасовите макари в индустриални обезмаслители, които не са широкодостъпни за обществеността и не съм имал късмет в премахването това масло по никой друг начин. Ако сте внимателни, като ползвате масло, никога няма да се сблъскате с този пролем.
Няколко думи за четкитеИ в двата дизайна на Ван де Грааф генератори, описани в тази книга, използвах прости туфи от тел, запоени в единия край за по-дебела и твърда медна жицова пружина, осигуряваща нужната сила, която да пази четката в плътен контакт срещу колана. Определено, най-големият проблем, който ще срещнете, е да пазите четките да са в стабилен допир с колана. Ако четките ви не са добре поставени или ако коланът ви има излишна гъвкавост, четките може често да се нуждаят от пренастройване.
Много конфигурации, някои много претенциозни, са били изпробвани, в опит да се постигне праволинейна конструкция на четките, която да издържа и на действията на глупаци. Аз все още не съм открил такъв вариант. Може да искате да пробвате панта, пружина, парче от метален лист или дори проводяща гума или пяна като онези, които се използват за опаковането на електронните платки и компоненти. При проектирането на четковите установки помнете, че, в идеалния случай, те трябва да се състоят от множество фини връхчета, като краищата на телчиците, защото плътността на електроните в остър връх е по-голяма и е по-вероятно да има трансфер на електрони. Въпреки това съм имал много добър късмет с незаострени предмети, например проводяща пяна. Според повечето текстове, а и моя личен опит показва, че добрата стара топка от фини телчици обикновено печели при сравнение, но, както споменах, това не е съвършено решение на проблема. Така че, експериментирайте. И се забавлявайте!
Няколко думи за коланитеДобър колан може да се изработи на практика от всеки изолиращ материал. Rayon (изкуствена коприна, бел.прев), Dacron (термопластична полимерна смола, бел.прев), гума, хартия, коприна, пластмаса и дори обикновен плат до сега са били използвани с успех. Износването вероятно е най-важният фактор, който трябва да се вземе предвид при избирането на материал. Гумата, например, изгнива в града, в който живея, заради озонът, който се съдържа в смога тук. Платът ще се протърка при високи скорости, въпреки че съм обличал плата с екстремно тънък слой от силиконова гума и така съм правил хубави колани. Неопренът с диагонална ориантация (на вътрешните му пластове, бел.прев) винаги ми е бил любим.
По мое мнение, най-лесният колан за всякакви цели се прави от вътрешна гума на колело, или още по-добре, гумената лайсна, която покрива главите на спиците под рамката на джантата. Един от тези колани може внимателно да се слепи с цимент за вътрешна гума от комплект за залепяне на гуми. Дори малко “Супер-лепило” ще сработи.
При изработването на колан също помнете, че колкото е по-широк колана, толкова по-бързо се натрупва заряд (има си причина за това). И, може да искате да отделите малко време за мисълта за шума, който се произвежда от някои материали. При 5000 оборота в минута един зле направен колан ще произвежда значително количество шум.
Един последен вариант за колан е да се купи готово направен колан от склад за научни материали, като Analytical Scientific, Post Box 675, Helotes, TX 78023.д Такива компании често могат да доставят множество различни размери и видове колани. Бих предложил да поръчате най-дебелите и най-силните, които се предлагат за домашно направени генератори. НАмирам цената на комерсиалните колани за малко прекалено скъпа за банковата ми сметка, но вие може да сметнете цената им за по-приемлива, в зависимост от проекта ви.